EXERCISES OF SECTIONS 2.5, 2.6

Question 1. For what value(s) of k does

$$\begin{bmatrix} 1 & 1 & 3 & \vdots & 0 \\ 2 & 4 & 5 & \vdots & 0 \\ 1 & -1 & k^2 & \vdots & 0 \end{bmatrix}$$

have infinitely many solutions?

Question 2. $A_{m \times n} X = b$ has infinitely many solutions. Which of the following statement must be true?

- A. $m \leq n$
- B. $n \leq m$
- C. $\operatorname{rank}(A) = n$
- D. $\operatorname{rank}(A) < n$

When $A_{m \times n} X = b$ has a unique solutions, which of these statement must be true?

Question 3. Is

1	-2	4	÷	a
-1	1	-3		
4	3	5	÷	c

consistent for all a, b, c?